欢迎访问江南电竞入口安卓版
字节向英伟达抛出10亿橄榄枝,背后的商业信号已摆上桌面
2023-06-15 来源:贤集网
309

关键词:英伟达GPU人工智能

6月13日消息,英伟达的RTX 40系列显卡已经发到RTX 4060系列了,主要有三款,RTX 4060 Ti 16GB、RTX 4060 Ti 8GB及RTX 4060 8GB三款,售价3899、3199及2399元起。


不过首批上市的是RTX 4060 Ti 8GB,其他两款要到7月份才上市。

2023年了,3000多的显卡配8GB显存够不够?这个话题也引发了很多争议,毕竟上代的RTX 3060后来都给了12GB显存,4K分辨率下还能打,而8GB的RTX 4060 Ti显卡被吐槽为1080p战神。


1、从砍单到加购,同时内部腾挪

今年春节后,拥有云计算业务的中国各互联网大公司都向英伟达下了大单。字节今年向英伟达订购了超过10亿美元的GPU,另一家大公司的订单也至少超过10亿元人民币。仅字节一家公司今年的订单可能已接近英伟达去年在中国销售的商用GPU总和。

仅字节一家公司今年的订单可能已接近英伟达去年在中国销售的商用 GPU 总和。去年 9 月,美国政府发布对 A100、H100(英伟达最新两代数据中心商用 GPU) 的出口限制时,英伟达曾回应称这可能影响去年四季度它在中国市场的 4 亿美元(约合 28 亿元人民币)潜在销售。以此推算,2022 年全年英伟达数据中心 GPU 在中国的销售额约为 100 亿元人民币。



相比海外巨头,中国大科技公司采购 GPU 更为急迫。过去两年的降本增效中,一些云计算平台减少了 GPU 采购,储备不足。此外,谁也不敢保证,今天能买的高性能 GPU,明天会不会就受到新的限制。

阿里也曾在 2018-2019 年积极采购 GPU。一位阿里云人士称,当时阿里的采购量至少达到上万块规模,购买的型号主要是 V100 和英伟达更早前发布的 T4。不过这批 GPU 中只有约十分之一给到了达摩院用作 AI 技术研发。2021 年发布万亿参数大模型 M6 后,达摩院曾披露训练 M6 使用了 480 块 V100。

阿里当时购买的 GPU,更多给到了阿里云用于对外租赁。但包括阿里云在内,一批中国云计算公司都高估了中国市场的 AI 需求。一位科技投资人称,大模型热潮之前,国内主要云厂商上的 GPU 算力不是紧缺,而是愁卖,云厂商甚至得降价卖资源。去年阿里云先后降价 6 次,GPU 租用价下降超两成。

在降本增效,追求 “有质量的增长” 与利润的背景下,据了解,阿里在 2020 年之后收缩了 GPU 采购规模,腾讯也在去年底砍单一批英伟达 GPU。

然而没过多久后的 2022 年初,ChatGPT 改变了所有人的看法,共识很快达成:大模型是不容错过的大机会。

各公司创始人亲自关注大模型进展:字节跳动创始人张一鸣开始看人工智能论文;阿里巴巴董事局主席张勇接手阿里云,在阿里云峰会发布阿里大模型进展时称,“所有行业、应用、软件、服务,都值得基于大模型能力重做一遍”。

一名字节人士称,过去在字节内部申请采购 GPU 时,要说明投入产出比、业务优先级和重要性。而现在大模型业务是公司战略级别新业务,暂时算不清 ROI 也必须投入。

研发自己的通用大模型只是第一步,各公司的更大目标是推出提供大模型能力的云服务,这是真正可以匹配投入的大市场。


2、英伟达是最大的人工智能芯片生产商

英伟达目前生产用于AI开发的绝大多数GPU,由于AI工具需要大量数据和强大的处理能力,而仅构建一个AI系统可能需要数千个芯片,因此英伟达的需求急剧上升。

虽然英伟达最初专注于为视频游戏行业制造GPU,但近年来,这家芯片制造商已扩展到人工智能和加密货币挖掘领域,扩大了其产品和服务范围。

最近,英伟达的人工智能芯片帮助其数据中心部门的收入超过了游戏部门。这甚至促使英伟达为数据中心提供新一代AI芯片,承诺大幅提升性能。

5月英伟达宣布了DGX H100系统。英伟达表示,该产品采用八个通过NVLink连接的H100张量核心GPU,以及双英特尔至强白金8480C处理器,2TB系统内存和30tb NVMe固态硬盘。

尽管努力满足不断增长的需求,但英伟达仍发现需求超过供应。


3、全世界都在抢算力

对英伟达数据中心 GPU 的竞赛也发生在全球范围。不过海外巨头大量购买 GPU 更早,采购量更大,近年的投资相对连续。

2022 年,Meta 和甲骨文就已有对 A100 的大投入。Meta 在去年 1 月与英伟达合作建成 RSC 超级计算集群,它包含 1.6 万块 A100。同年 11 月,甲骨文宣布购买数万块 A100 和 H100 搭建新计算中心。现在该计算中心已部署了超 3.27 万块 A100,并陆续上线新的 H100。



微软自从 2019 年第一次投资 OpenAI 以来,已为 OpenAI 提供数万块 GPU。今年 3 月,微软又宣布已帮助 OpenAI 建设了一个新计算中心,其中包括数万块 A100。Google 在今年 5 月推出了一个拥有 2.6 万块 H100 的计算集群 Compute Engine A3,服务想自己训练大模型的公司。

中国大公司现在的动作和心态都比海外巨头更急迫。以百度为例,它今年向英伟达新下的 GPU 订单高达上万块。数量级与 Google 等公司相当,虽然百度的体量小得多,其去年营收为 1236 亿元人民币,只有 Google 的 6%。

据了解,字节、腾讯、阿里、百度这四家中国投入 AI 和云计算最多的科技公司,过去 A100 的积累都达到上万块。其中字节的 A100 绝对数最多。不算今年的新增订单,字节 A100 和前代产品 V100 总数接近 10 万块。

成长期公司中,商汤今年也宣称,其 “AI 大装置” 计算集群中已总共部署了 2.7 万块 GPU,其中有 1 万块 A100。连看似和 AI 不搭边的量化投资公司幻方之前也购买了 1 万块 A100。

仅看总数,这些 GPU 供各公司训练大模型似乎绰绰有余——据英伟达官网案例,OpenAI 训练 1750 亿参数的 GPT-3 时用了 1 万块 V100 ,训练时长未公开;英伟达测算,如果用 A100 来训练 GPT-3 ,需要 1024 块 A100 训练 1 个月,A100 相比 V100 有 4.3 倍性能提升。但中国大公司过去采购的大量 GPU 要支撑现有业务,或放在云计算平台上售卖,并不能自由地用于大模型开发和对外支持客户的大模型需求。

这也解释了中国 AI 从业者对算力资源估算的巨大差别。清华智能产业研究院院长张亚勤 4 月底参加清华论坛时说,“如果把中国的算力加一块,相当于 50 万块 A100,训练五个模型没问题。”AI 公司旷视科技 CEO 印奇接受《财新》采访时则说:中国目前可用作大模型训练的 A100 总共只有约 4 万块。

主要反映对芯片、服务器和数据中心等固定资产投资的资本开支,可以直观说明中外大公司计算资源的数量级差距。

最早开始测试类 ChatGPT 产品的百度,2020 年以来的年资本开支在 8 亿到 20 亿美元之间,阿里在 60-80 亿美元之间,腾讯在 70-110 亿美元之间。同期,亚马逊、Meta、Google、微软这四家自建数据中心的美国科技公司的年资本开支最少均超过 150 亿美元。

疫情三年中,海外公司资本开支继续上涨。亚马逊去年的资本开支已来到 580 亿美元,Meta、Google 均为 314 亿美元,微软接近 240 亿美元。中国公司的投资在 2021 年之后则在收缩。腾讯、百度去年的资本开支均同比下滑超 25%。

训练大模型的 GPU 已不算充足,各家中国公司如果真的要长期投入大模型,并赚到给其它模型需求 “卖铲子” 的钱,未来还需要持续增加 GPU 资源。


3、走得更快的 OpenAI 已遇到了这一挑战

5 月中旬,OpenAI CEO SamAltman 在与一群开发者的小范围交流中说,由于 GPU 不够,OpenAI 现在的 API 服务不够稳定,速度也不够快,在有更多 GPU 前,GPT-4 的多模态能力还无法拓展给每个用户,他们近期也不准备发布新的消费级产品。技术咨询机构 TrendForce 今年 6 月发布报告称,OpenAI 需要约 3 万块 A100 来持续优化和商业化 ChatGPT。

与 OpenAI 合作颇深的微软也面临类似情境:今年 5 月,有用户吐槽 New Bing 回答速度变慢,微软回应,这是因为 GPU 补充速度跟不上用户增长速度。嵌入了大模型能力的微软 Office 365 Copilot 目前也没有大规模开放,最新数字是有 600 多家企业在试用——Office 365 的全球总用户数接近 3 亿。

中国大公司如果不是仅把训练并发布一个大模型作为目标,而是真想用大模型创造服务更多用户的产品,并进一步支持其它客户在云上训练更多大模型,就需要提前储备更多 GPU。



Baidu
map