无人驾驶是新时代的技术,通过无人驾驶,我们可以释放我们的双手,节省开车占用的时间。对于无人驾驶,其实我们也并不陌生,时常会有无人驾驶的消息在各大媒体上传播。为增进大家对无人驾驶的认识,本文将对无人驾驶的三大阶段以及无人驾驶汽车的关键技术予以介绍。
一、无人驾驶的三大阶段
目前,无人驾驶汽车普及应用的最大挑战是大众对其接受度较低,对其安全性、可靠性的信任度较低。但因国家对无人驾驶汽车的政策法规尚未完善,无人驾驶汽车还不能在公开道路上行驶。
如同其他很多事物一样,无人驾驶实际上也有一个技术循序渐进发展的过程。无人驾驶也需分为不同阶段。
阶段一:辅助驾驶阶段。车道保持、自适应巡航等辅助驾驶功能,均属于这个阶段的技术,不过驾驶员仍旧是操作主体。
阶段二:半自动驾驶。在这个阶段中,电脑操纵下的自动驾驶已经可以完成前往目的地的过程,其可作为备用系统完成行驶,但受限于法律法规等因素,其仍旧不能作为整个驾驶行为的主体存在。
阶段三:全自动驾驶。技术、成本、法衡去规等因素都不再成为影响普及的因素,电脑控制的系统已经作为驾驶主体而存在,驾驶员也可以随时接管操作系统。
二、无人驾驶汽车关键技术
无人驾驶汽车是未来汽车发展的方向,是各种顶尖科技成果为一体的智慧型汽车。就目前发展现状来看,还有以下几个方面的技术OTR需取得突破。
1、传感器技术
现在无人车能出现很大程度上依赖传感器的进步。现在的无人驾驶汽车采用激光雷达,直接感知路面状况,用于分析计算。传感器接口层包括各种外围传感器的输入。感知层收集各种传感器的数据,进行多层次、多空间的信息互补和优化组合处理,最终实现对周围环境的全方位感知。
2、定位
目前主要的定位系统中美国的GPS应用最为广泛,技术也较为成熟,但目前民用的GPS定位精度远达不到无人车的需求,GPS官方民用定位精度“《10 m”,更高精度的GPS基本要依靠差分完成。差分的原理很简单:设置一个固定基站,固定基站校准位置,再将信号传递给车载设备,车载设备在接收到基站信号和GPS信号后差分获得。但是每一个基站的有效范围也就30 km。于是有很多技术要解决GPS精度不足的问题,如地图匹配。根据激光雷达和组合导航单元的数据信息构建出全局地图。激光雷达、摄像头、毫米波雷达、超声波雷达的感知结果融合处理后建立以行驶车辆为中心的感知局部地图。并通过 GPS 信息、车辆位置和姿态信息的叠加。提供一种直观了解行车环境各种信息处理结果的实时综合地图。
3、避障
车辆前方有障碍,障碍物是运动的还是静止的,车是停下来还是绕过去。这部分主要的难度是从传感器识别障碍,在车辆运动的前提下,确定障碍的运动状态。也就是说你要在运动的坐标系下,计算另一个物体相对静坐标系的速度,并作出判断。
4、识别
人能轻易识别出道路上的交通标识,如限速牌、红绿灯,同时作出相应的反应,但这对于机器来说是一个困难的挑战。目前的机器视觉技术还难以识别像树木、行人、动物等物体。这些物体的识别都要通过视觉系统完成。在无人车上不但需要能在有限的时间里识别出来,并且还要考虑道路中可能有的光线变化、遮挡等问题。要完善解决这些问题,还需要等待机器视觉和图像识别领域的技术突破。
5、控制
除了上面的避障以外,其他外围机构的改造可能会存在一些改造上的问题。如何介入转向架、如何介入油门。这部分技术的难度较小,汽车控制技术如今已比较成熟,而无人驾驶汽车在未来基本为纯电动汽车,在控制难度上将小于传统的内燃机汽车。